
MGL Avionics flight data interface specification

Preliminary

This is a design specification and subject to change

Document revision: 6

28 February 2012

MGL waives copyright to this document. This document is available for third party use
including any use not based on any MGL equipment.

General

This document describes the raw data format used for transferring flight data information from
an EFIS system to an MGL avionics flight data recording device (black box flight recorder) or
other devices.

The following message IDs are defined:

Message 01 – Primary flight data
Message 02 – GPS data
Message 03 – Attitude data
Message 04 – Various inputs (flaps, gear, etc)
Message 05 – Traffic file
Message 06 – Alert/Warning/Information text message
Message 10 – Engine message
Message 11 – Fuel tank levels
Message 30 – Navigation data (Active navigation information, HSI, VSI, GSI)
Message 31 – Secondary navigation data
Message 35 - COM
Message 41 – Flight plan header
Message 42 – Flight plan item
Message 200-255 – Vendor specific. Please obtain information from your vendor.

Data is transmitted over standard RS232 signaling using the TX line. RX line is not used by
transmitting equipment.
Baudrate is set to 115200 at 8 bits per character, 1 start and 1 stop bit.
This allows transmission of up to 11520 bytes per second.

Message data is binary and arranged to suit processors that have word boundary access
limitations (such as most ARM implementations). Messages are arranged to favor DMA
message pipes common in modern micro controllers to allow message reception without
microprocessor core involvement (Direct UART -> Memory transfers).
Receiving equipment must be able to handle a message length of up to 276 bytes total (up to
264 bytes data).
Messages can be securely received by means of a strong message start synchronization
(05+02+Message length+Message length xor 0xFF). This prevents false synchronization on
message content. Data content can be verified using a standard CRC 32 bit checksum giving
a high level of data integrity confidence.
A message length of 0x00 should be interpreted as 0x100, I.e. 256 bytes.

Each message contains a byte that shows its average message rate per second. A further
byte shows the message number within that second. This can be used at the receiving side to
detect missing messages. This number counts up from 1 and is reset to 1 at the start of the
next system second. For message rates of 1 per second, this byte alternates between 0 and 1
for every transmission.

It is acceptable for the EFIS to vary the rate per message on a per second bases. For

example, one second it may send 10 messages of a particular type, the next second it may
decide to send 5 messages. However, the EFIS MUST update the message rate information
byte in the message. Message rate changes MUST only occur when the message counter is
at its reset value (at start of the current second).

For flight data recording purposes, the data recorder may skip messages that exceed the set
recording rate. For example, a message may be transmitted 10 times per second but the flight
data recorder elects to only record one message per second.

Note: Message count is assumed to be asynchronous and would be reset to 1 at the start of a
system second. It is permissible for the transmitting device to skip messages where this is
needed for bandwidth control or it may be due to system load reasons. Due to the typical
asynchronous nature of these transmissions with respect to time it is also possible for a
message count to exceed the message rate number. For example, a message with a rate of 4
per second may have a message count field of 5 before being reset to 1 for the next second.

Devices should not use message count fields or message arrival times for internal timing as
these are not guaranteed.

Data types
Longint 32 bit signed integer
Smallint 16 bit signed integer
Word 16 bit unsigned integer
Byte 8 bit unsigned integer
String Byte based string of characters. The first byte is length of string and any

characters in ASCII follow. Unused locations are to be treated as
“don't care”. An empty string has a “0” in the first location.
Example: String[6] – This string can have up to 6 characters and it
occupies 7 bytes (length byte plus six characters).
This is different to a “C” string but has the advantage that any value can
be used as a character so this method can be used to store flexible length
general data.

Byte order
Data types consisting of more than one byte are sent LSB first and MSB last

Unknown or invalid values
Any unknown or invalid quantity in a message should be set to zero unless otherwise
mentioned in the specification of the message.

Message length byte in header
The message length byte refers to length of data portion (excluding header, checksum plus 8
bytes default message length).

The data portion of a message MUST be at least 9 bytes in size. This is the case for all
standard messages. If the data portion is 9 bytes in size, the length byte has a value of “1”
and the XOR byte following has a value of 0xFE (0x01 xor 0xFF).
This scheme allows the transmission of a 256 byte data page with a private 8 byte header.
Total, maximum number of bytes in a message is thus: 276 bytes
8 bytes header (starting at DLE)
+
9 to 264 bytes of data (maximum 256+8 bytes private header)
4 bytes checksum
If you parse a packet of data and you have just received the XOR'ed version of the length
byte and thus can verify the length, you need to receive a further “length byte” + 16 bytes to
receive all outstanding bytes in the packet including the 4 byte checksum.

Checksum location
Checksum location must be on a 4 byte boundary, counting from the DLE - filler bytes are
inserted if needed to ensure this. This is to allow even 32 bit word access to the checksum in
a receiver using an ARM processor or similar with word size boundary access restrictions or
to utilize CRC32 hardware available in some processor chips that may be restricted to using
word (32 bit) aligned data.

Message 01: Primary flight

This message should be sent by the EFIS at a recommended rate of 5 per second. Rates
from 1 to 30 per second are acceptable based on the systems requirements.

 DLE: byte; 0x05
 STX: byte; 0x02
 MessageLength: byte; 0x18 36 bytes following MessageVersion - 12
 MessageLengthXOR: byte; 0xE7
 MessageType: byte; 0x01
 MessageRate: byte; 0x05
 MessageCount: byte; Message Count within current second
 MessageVersion: byte; 0x01
 PAltitude: longint; Pressure altitude in feet
 BAltitude: longint; Pressure altitude in feet, baro corrected
 ASI: word; Indicated airspeed in 10th Km/h
 TAS: word; True airspeed in 10th Km/h
 AOA: smallint; Angle of attack in tenth of a degree
 VSI: smallint; Vertical speed in feet per minute
 Baro: word; Barometric pressure in 10th millibars (actual

measurement from altimeter sensor, actual pressure)
 Local: word; Local pressure setting in 10th millibars (QNH)
 OAT: smallint; Outside air temperature in degrees C
 Humidity: byte; 0-99%. If not available 0xFF
 SystemFlags: Byte; See description below
 Hour,Minute,
 Second,Date,
 Month,Year: bytes; Time as set in RTC. 24 hour format, two digit year.
 FTHour,FTMin: bytes; Flight time since take off. Hours, minutes.
 Checksum longint; CRC32

SystemFlags:
 bit 0 0: no flight active 1: flight active
 bit 1 0: no OAT sensor 1: OAT sensor detected
 bit 2 0: no humidity sensor 1: Humidity sensor detected

Message 02: GPS Message
This message contains basic GPS information. This message should be sent at a rate
compatible with the systems GPS update rate (typically from 1 to 10 per second). Minimum
rate is 1 per second.
 DLE: byte; 0x05
 STX: byte; 0x02
 MessageLength: byte; 0x24 48 bytes following MessageVersion - 12
 MessageLengthXOR: byte; 0xDB
 MessageType: byte; 0x02
 MessageRate: byte; 0x04
 MessageCount: byte; Message Count within current second
 MessageVersion: byte; 0x01
 Latitude: longint; Latitude in degrees / 180.000 (+ = North)
 Longitude: longint; Longitude in degrees / 180.000 (+ = East)
 GPSAltitude: longint; Altitude from GPS in feet
 AGL: longint; Altitude above ground level as determined by terrain
 North velocity: longint; velocity towards north cm/s
 East velocity: longint; velocity towards east cm/s
 Down velocity: longint; velocity towards down cm/s
 GroundSpeed: word; Ground speed from GPS in 10th Km/h
 TrackTrue: word; True track from GPS. 10th of a degree
 Variation: smallint; Magnetic variation in 10th of a degree. Negative is west.
 GPS byte; See description below
 SatsTracked: byte; Number of satellites tracked
 SatsVisible: byte; Total number of satellites visible
 HorizontalAccuracy: byte; Horizontal GPS accuracy estimate in feet
 VerticalAccuracy: byte; Vertical GPS accuracy estimate in feet
 GPS capability: byte; See below
 RAIM status: byte; See Raim information below
 RAIM HError: byte; Horizontal expected error
 RAIM VError: byte; Vertical expected error
 PaddingByte1: byte; 0x00 For alignment
 Checksum longint; CRC32

GPS byte
This byte shows the GPS mode:
 0 : Acquiring
 1: GPS internal dead reckoning
 2: 2D fix
 3: 3D fix
 4: 2D fix EFIS dead reckoning (IMU)
 5: 3D fix EFIS dead reckoning (IMU)

RAIM information
Status: 0: no satellite fail detected, else ID of most likely failed satellite
HError,VError: Horizontal and Vertical error in feet, based on using only satellites that
passed the RAIM test.

Note: GPS data items are validated against this value. All GPS derived values are invalid if
GPS byte is 0. GPS altitude is invalid if GPS byte is not 3 or 5.
The EFIS system may use dead reckoning to arrive at a higher position update rate than the
GPS system can provide, for example using IMU. If the current data is based on a dead
reckoning estimate, the GPS mode is 4 or 5.

GPS capability
Bit 0: 0: GPS not designed to DO-229 1: GPS designed to DO-229 Beta 1 or higher
Bit 1: 0: Not WAAS capable or disabled 1: WAAS capable and enabled
Bit 2: 0: No RAIM functionality 1: RAIM functional and enabled
Bit 3: 0: GPS can track less than 12 sats 1: GPS can track more than 11 sats
Bit 4: 0: GPS cannot use Glonast/Galileo 1: GPS can use Glonast/Galileo

Message 03: Attitude
This message is sent typically at the processed AHRS rate, not the native AHRS rate.
Transmission rates are typically related to EFIS screen refresh or internal image drawing
update rates. Typical rates are from 1 to 50 messages per second. Recommended rates
would be from 10 to 25 to ensure smooth image creation where this is needed.

 DLE: byte; 0x05
 STX: byte; 0x02
 MessageLength: byte; 0x14 32 bytes following MessageVersion - 12
 MessageLengthXOR: byte; 0xEB
 MessageType: byte; 0x03
 MessageRate: byte; 0x0A
 MessageCount: byte; Message Count within current second
 MessageVersion: byte; 0x01
 HeadingMag: word; Magnetic heading from compass. 10th of a degree
 PitchAngle: smallint; AHRS pitch angle 10th of a degree
 BankAngle: smallint; AHRS bank angle 10th of a degree
 YawAngle: smallint; AHRS yaw angle 10th of a degree (see notes below)
 TurnRate: smallint; Turn rate in 10th of a degree per second
 Slip: smallint; Slip (ball position) -50 (left) to +50 (right)
 GForce: smallint; Acceleration acting on aircraft in Z axis (+ is down)
 LRForce: smallint; Acceleration acting on aircraft in left/right axis (+ if right)
 FRForce: smallint; Acceleration acting on aircraft in forward/rear axis (+ is

forward)
 BankRate: smallint; Rate of bank angle change (See notes on units)
 PitchRate: smallint; Rate of pitch angle change
 YawRate: smallint; Rate of yaw angle change
 SensorFlags: byte; See description below
 PaddingByte1: byte; 0x00 For alignment
 PaddingByte2: byte; 0x00 For alignment
 PaddingByte3: byte; 0x00 For alignment
 Checksum longint; CRC32

SensorFlags:
bit 0 0: No magnetic compass 1: Magnetic compass detected
bit 1 0: No AHRS 1: AHRS detected
bit 2 0: No GPS 1: GPS detected and operational
bit 3 0: No meaning 1: AHRS over range or compromised
bit 4 0: AHRS is gyro 1: AHRS does not use gyros (GPS derived)
bit 5 0: No X/Y acceleration 1: X/Y acceleration is measured
bit 6 0: No rates 1: Rates are provided

Accelerations
Accelerations are in 100th of a G.

Yaw Angle
Yaw angle is system specific. It may be referenced to North (true or magnetic) or it can be
freely drifting, depending on the underlying hardware implementation.

Gyro Rates
Rates are transmitted in a 16 bit signed format involving two scaling factors chosen
depending on the rate at the time.
For sensor rates less than 150 degrees per second:
Value is in 100th of a degree per second. Highest value is thus +14999 or -14999
For sensor rates higher or equal to 150 degrees per second:
Value is in 10th of a degree per second +/- 1500 +/-15000 depending on direction.

Examples:

Rate is 89.45 degrees per second: Value is 8945.
Rate is 345.3 degrees per second: Value is 16953. (3453-1500+15000).

Positive numbers: Bank right, Pitch up, Yaw right.
Negative numbers: Bank left, Pitch down, Yaw left.

Euler angle ranges
Bank Angle range: -1800 to +1799 – positive is bank right
Pitch Angle range: -900 to +899 – positive is pitch up
Yaw Angle range: 0 to 3599

Message 04: Various input states and signals
This message is sent typically at a rate of 2 per second. It contains readings related to analog
and digital inputs that can be populated as needed by a vendor.

 DLE: byte; 0x05
 STX: byte; 0x02
 MessageLength: byte; Depends on message content
 MessageLengthXOR: byte; Depends on message content
 MessageType: byte; 0x04
 MessageRate: byte; 0x02
 MessageCount: byte; Message Count within current second
 MessageVersion: byte; 0x01
 NumberOfAnalogInputs: byte; Number of analog input reading in this message
 NumberOfDigitalInputs: byte; Number of digital input readings in this message
 Gear 1 state: byte;
 Gear 2 state: byte;
 Gear 3 state: byte;
 Gear 4 state: byte;
 Gear 5 state: byte;
 FlapPosition: byte;
 FlapPositionAnalog: smallint;
 PitchTrimPosition: smallint;
 BankTrimPosition: smallint;
 YawTrimPosition: smallint;
 Digital: longint; //Up to 32 bits for digital input states
 Analog: array[0..NumberOfAnalogInputs-1] of word; //See notes
 Checksum longint; CRC32

The number of analog inputs must be even (0 is allowed). This is to ensure long word (4 byte)
alignment of checksum.
Gear states are up to the vendor to define. They can be used for anything and are not
necessarily used for “landing gear”.
For landing gear the states are typical:
0 Gear down
1-254 Gear in intermediate position (can be a scaled value of actual position if known)
255 Gear up
Analog values are 16 bit, usually raw ADC values but may be scaled to present quantities etc.
For MGL systems the values are scaled based on settings on the EFIS.
Flap positions are:
0 Unknown
1 Flap up
2 Flap 1
3 Flap 2
4 Flap down
10 Flap up, negative (some aircraft allow negative flap positions for fast cruise)
Flap position analog – as decided by vendor
Trim positions – as decided by vendor. It is recommended to use 0 as “neutral”

Message 05: Traffic file
This message is sent at a rate of once per second. It contains up to 32 traffic items.
Traffic items may be sorted in threat order if the system supports this (this is identified by the
traffic mode bit).
Traffic location is processed by the EFIS regardless of source and shown in latitude and
longitude if possible. Range or Bearing only messages can also be included.

 DLE: byte; 0x05
 STX: byte; 0x02
 MessageLength: byte; Depends on number of traffic items
 MessageLengthXOR: byte; Depends on number of traffic items
 MessageType: byte; 0x06
 MessageRate: byte; 0x01
 MessageCount: byte; 0 or 1, alternating with every transmission
 MessageVersion: byte; 0x01
 Traffic mode: byte; See description below
 Number of traffic: byte; Number of traffic in this transmission (0 to 32)
 Number of messages: byte; Number of messages (1,2,3 or 4)
 Message number: byte; Number of this message (starts with “1” or zero if none).

 Followed by: 0 to 7 messages of a traffic item (32 bytes each)

 Latitude: longint; in degrees / 180000 or Range in meters
 Longitude: longint; in degrees / 180000 or Bearing in 10th degree
 Altitude: longint; in feet. 0X80000000 if not known
 Track: smallint; in 10th degrees. -1 if not known
 Speed: smallint; in Km/h. -1 if not known
 Vertical Speed: longint; in feet/minute. Positive is climbing.
 Callsign: string[6] Callsign. 0X00 in first location if not known
 Source: byte; Source of traffic information, see below
 Threat level: byte; See below. 0 if not known
 Resolution: byte; See below. 0 if no resolution system
 Aircraft category: byte; See below. 0 if not known
 Traffic ID: byte; Number of traffic message in total transmission

If no traffic is available, message length is set to 1 and a blank data portion with 9 bytes of
value 0x00 is sent.

Traffic mode:
0 – Traffic items are unsorted
1 -- Traffic items are sorted by distance
2 – Traffic items are sorted by threat level

Traffic source:
0 - Unknown
1 - TCAS or TIS (ARINC 429 or other data feed)
2 - PCAS
3 - FLARM

4 - ADS-B
5 - ADS-B 1090 ES
6 - Unspecified source giving at least lat/long of traffic location
7 - Unspecified source giving range only
8 - Unspecified source giving bearing only

Threat level
0 – Unknown
1 – None
2 – Mild
3 – High
4 – Danger

Resolution
0 – Unknown
Bit 0 set – pull up
Bit 1 set – push down
Bit 2 set – bank right
Bit 3 set – bank left
Bit 4 set – speed up
Bit 5 set – slow down
Bit 6 set – Add “sharp” to resolution
Bit 7 set – Threat resolution available, do nothing

Aircraft category

Aircraft categories are based on DO-260B and defined as follows:

0 - No defined category, emitter set “A”
1 - Light
2 - Small
3 - Large
4 - High vortex large
5 - Heavy
6 - High performance
7 - Rotor craft
8 - No defined category, emitter set “B”
9 - Glider
10 - Lighter than air
11 - Parachutist
12 - Ultralight
13 - Reserved
14 - UAV
15 - Space
16 - No defined category, emitter set “C”
17 - Surface, emergency vehicle
18 - Surface, service vehicle
19 - Point obstacle
20 - Line obstacle

21..23 - Undefiend
24 - No defined category, emitter set “D”
25..31 Undefined

255 - This traffic item does not have any category identification

Message 10: Engine data
This message is sent at a rate typically from 1 to 10 times per second depending on
implementation. Each engine has one message.

 DLE: byte; 0x05
 STX: byte; 0x02
 MessageLength: byte; Depends on message content
 MessageLengthXOR: byte; Depends on message content
 MessageType: byte; 0x0A
 MessageRate: byte; As required
 MessageCount: byte; As required
 MessageVersion: byte; 0x01
 Engine number: byte; 1..Number of engines
 Engine type: byte; 0 – Piston 1 – Turbine

 For Combustion engines:

 Number of EGT: byte;
 Number of CHT: byte;
 RPM: word; Revolutions / minute
 PULSE: word; AUX pulse/RPM value
 OIL pressure 1: word; In 10th of a millibar (Main oil pressure)
 OIL pressure 2: word; In 10th of a millibar (optional second oil pressure)
 Fuel pressure: word; In 10th of a millibar
 Coolant temperature: smallint; In degrees C
 OIL temperature 1: smallint; In degrees C
 OIL temperature 2: smallint; In degrees C
 AUX temperature 1: smallint; In degrees C
 AUX temperature 2: smallint; In degrees C
 AUX temperature 3: smallint; In degrees C
 AUX temperature 4: smallint; In degrees C
 Fuel flow: word; In 10th liters/hour
 AUX flow: word; In 10th liters/hour
 Manifold pressure: word; In 10th of a millibar
 Boost pressure: word; In 10th of a millibar
 Inlet temperature: smallint; In degrees C
 Ambient pressure: word; In 10th of a millibar (intake air pressure)
 EGT: smallint; In degrees C - Repeated for each EGT
 CHT: smallint; In degrees C – Repeated for each CHT

 For turbine engines:

 Inlet temperature: smallint; In degrees C
 N1 longint; RPM
 N2 longint; RPM
 Exhaust temperature: smallint; In degrees C
 OIL pressure 1: word; In 10th of a millibar (Main oil pressure)

 OIL pressure 2: word; In 10th of a millibar (optional second oil pressure)
 Fuel pressure: word; In 10th of a millibar
 OIL temperature 1: smallint; In degrees C
 OIL temperature 2: smallint; In degrees C
 AUX temperature 1: smallint; In degrees C
 AUX temperature 2: smallint; In degrees C
 AUX temperature 3: smallint; In degrees C
 Fuel flow: word; In 10th liters/hour
 Ambient pressure: word; In 10th of a millibar (intake air pressure)
 Padding: word; Set to zero. Used to align checksum.
 Either engine type is followed by:

 Checksum longint; CRC32

Message 11: Fuel levels
This message is sent at a rate of 1 times per second.

 DLE: byte; 0x05
 STX: byte; 0x02
 MessageLength: byte; Depends on message content
 MessageLengthXOR: byte; Depends on message content
 MessageType: byte; 0x0B
 MessageRate: byte; 1
 MessageCount: byte; 0 – 1 alternating
 MessageVersion: byte; 0x01

 Number of tanks: longint; Longint used for alignment purposes

 For each tank:

 Level: longint; In 10th liters
 Tank type: byte; See below
 Tank on: byte; See below
 Tank sensors: word; See below

 Followed by:

 Checksum longint; CRC32

Tank type:
0: physical tank with a level sender
1: virtual tank, level is calculated from fuel flow and starting value
2: virtual tank, level is calculated from flight time and starting value
Other values may be used as required by implementer

Tank on:
0: Tank is off
1: Tank is on
2: Unknown

Tank sensors:
This item can be used by implementer as needed. It is recommended to use value 0xFFFF if
this item is not used.

Message 30: Navigation
This message is sent typically at a rate of 1 per second.

 DLE: byte; 0x05
 STX: byte; 0x02
 MessageLength: byte; 0x2C ;56 bytes – 12 following MessageVersion
 MessageLengthXOR: byte; 0xD3
 MessageType: byte; 0x04
 MessageRate: byte; 0x02
 MessageCount: byte; Message Count within current second
 MessageVersion: byte; 0x01
 Flags: word; NAV validity flags, see below
 HSISource: byte;
 VNAVSource: byte;
 APMode: byte; 0 = not engaged, 1 = engaged
 Padding: byte;
 HSINeedleAngle: smallint; Relative HSI needle angle +1800 to -1800. 0 = up
 HSIRoseHeading: word; 0-3599
 HSIDeviation: smallint; -4096 to 4095 for full deflection
 VerticalDeviation: smallint; -4096 to 4095 for full deflection
 HeadingBug: smallint; 0-3599
 AltimeterBug: longint; in feet
 WPDistance: longint;
 WPLatitude: longint; MGL format, 180000 per degree
 WPLongitude: longint; MGL format, 180000 per degree
 WPTrack: smallint; 0-3599
 VOR1Radial: smallint; 0-3599
 VOR2Radial: smallint; 0-3599
 DME1: word; in 0.1 Km steps
 DME2: word; in 0.1 Km steps
 ILSDeviation: smallint; -4096 to 4095 for full deflection
 GSDeviation: smallint; -4096 to 4095 for full deflection
 GLSHorizontalDeviation: smallint; -4096 to 4095 for full deflection
 GLSVerticalDeviation: smallint; -4096 to 4095 for full deflection
 Padding: word;
 Checksum longint; CRC32

Flag bits are:
0 HSI valid
1 VNAV valid
2 Waypoint valid
3 Autopilot engaged
4 VOR1 valid
5 VOR2 valid
6 DME1 valid
7 DME2 valid
8 ILS valid

9 GS valid
10 GLS valid

All angular values are in 10th of a degree. Deviations range from -4096 to +4095 for full needle
deflection.

HSI Nav source
0 Vectors (heading bug)
1 GPS waypoint navigation
2 VOR navigation
3 ILS

VNAV source
0 Altitude bug
1 Glide slope

AP Mode is split into 2 nibbles of 4 bits. The lower 4 bits shows vertical mode, the upper 4 bits
shows horizontal mode.

Horizontal mode:
0 Heading bug
1 HSI
Vertical mode:
0 Set Altimeter bug to current altitude, then follow Altimeter bug
1 Altimeter bug
2 Vertical speed hold
3 Flight plan vertical NAV
4 Pitch attitude hold
5 Vertical mode suspended, use only horizontal NAV
6 Air speed hold

Checksum calculation

Checksum calculation is done from the first byte following MessageLengthXOR to the last
data byte before the checksum. Here is a sample source in C which uses fast table lookup
CRC calculation. The table can be calculated on startup or can be pre-calculated and stored
in ROM.

Header File
// CRCdemo.h

protected:
 ULONG crc32_table[256]; // Lookup table array
 void Init_CRC32_Table(); // Builds lookup table array
 ULONG Reflect(ULONG ref, char ch); // Reflects CRC bits in the
lookup table
 int Get_CRC(CString& text); // Creates a CRC from a text string

Source File
// CRCdemo.cpp

void CRCdemo::Init_CRC32_Table()
{// Call this function only once to initialize the CRC table.

 // This is the official polynomial used by CRC-32
 // in PKZip, WinZip and Ethernet.
 ULONG ulPolynomial = 0x04c11db7;

 // 256 values representing ASCII character codes.
 for(int i = 0; i <= 0xFF; i++)
 {
 crc32_table[i]=Reflect(i, 8) << 24;
 for (int j = 0; j < 8; j++)
 crc32_table[i] = (crc32_table[i] << 1) ^ (crc32_table[i] & (1 <<
31) ? ulPolynomial : 0);
 crc32_table[i] = Reflect(crc32_table[i], 32);
 }
}

ULONG CRCdemo::Reflect(ULONG ref, char ch)
{// Used only by Init_CRC32_Table().

 ULONG value(0);

 // Swap bit 0 for bit 7

 // bit 1 for bit 6, etc.
 for(int i = 1; i < (ch + 1); i++)
 {
 if(ref & 1)
 value |= 1 << (ch - i);
 ref >>= 1;
 }
 return value;
}

int CRCdemo::Get_CRC(CString& text)
{ // Pass a text string to this function and it will return the CRC.

 // Once the lookup table has been filled in by the two functions above,
 // this function creates all CRCs using only the lookup table.
 // Note that CString is an MFC class.
 // If you don't have MFC, use the function below instead.

 // Be sure to use unsigned variables,
 // because negative values introduce high bits
 // where zero bits are required.

 // Start out with all bits set high.
 ULONG ulCRC(0xffffffff);
 int len;
 unsigned char* buffer;

 // Get the length.
 len = text.GetLength();
 // Save the text in the buffer.
 buffer = (unsigned char*)(LPCTSTR)text;
 // Perform the algorithm on each character
 // in the string, using the lookup table values.
 while(len--)
 ulCRC = (ulCRC >> 8) ^ crc32_table[(ulCRC & 0xFF) ^ *buffer++];
 // Exclusive OR the result with the beginning value.
 return ulCRC ^ 0xffffffff;
}

Revision history
1 - Internal release
2 - Internal release
3 - Changed spec for length byte in header to accommodate 256 byte data pages with
private 8 byte header. Added Traffic file (message 06).
4 - Added message 10 (Engine data), Message 11 (Fuel level)
5 - Internal release
6 - Redefined message 04 as “various inputs”, Changed message 06 to message 05.
Dropped autopilot message (data now included in Navigation message). Defined message 04
and message 30. Clarified length byte.

	General
	Data types
	Byte order
	Unknown or invalid values

	Message length byte in header
	Checksum location
	Message 01: Primary flight
	SystemFlags:

	Message 02: GPS Message
	GPS byte
	RAIM information
	GPS capability

	Message 03: Attitude
	SensorFlags:
	Accelerations
	Yaw Angle
	Gyro Rates
	Euler angle ranges

	Message 04: Various input states and signals
	Message 05: Traffic file
	Message 10: Engine data
	Message 11: Fuel levels
	Message 30: Navigation
	Checksum calculation

	Revision history

